Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
2.
Salud Colect ; 16: e2897, 2020 10 17.
Article in Spanish | MEDLINE | ID: covidwho-1608979

ABSTRACT

Taking into account the latent threat of future pandemics, the objective of this study is to analyze - particularly with respect to medications - the sustainability of the health system, healthcare coverage, budgetary efficiency, and connections with the pharmaceutical patent system. In this context, the pharmaceutical patent system acts as a determining factor, given that promoting its existence stimulates the production of research, but in turn its existence stands in the way of rapid advancements, primarily due to the development of protective legislation concerning patents, which has largely accommodated the industry. Given that the pharmaceutical industry has managed to extend the duration of patents and avoid the incorporation of generics, our analysis focuses on the influence of pharmaceutical patents; this influence has led to reflection on the possibility of combining efforts by forging alliances between numerous companies and the public sector in order to face the challenges posed by new diseases caused by viruses that give rise to epidemics and pandemics.


Ante la amenaza latente de futuras pandemias, este estudio tiene como objetivo analizar ­desde el eje de los medicamentos­ la sostenibilidad del sistema sanitario, la cobertura, la eficiencia del gasto y su vinculación al sistema de patentes farmacéuticas. En este marco, el sistema de patentes farmacéuticas adquiere un papel determinante, dado que fomentar su existencia estimula la producción de investigación pero, a su vez, su existencia no suscita un rápido avance, debido al desarrollo legislativo protector que han tenido las patentes y que ha dado lugar a un acomodamiento de la industria. Como la industria farmacéutica ha conseguido extender la duración de patentes y evitar la incorporación de genéricos, se analiza la influencia de las patentes farmacéuticas que ha dado lugar a reflexionar acerca de la posibilidad de consorciar esfuerzos realizando alianzas entre varias empresas y el sector público para afrontar los retos que plantean nuevas enfermedades producidas por virus que dan lugar a epidemias y pandemias.


Subject(s)
Antiviral Agents , Drug Costs , Drug Industry/organization & administration , Health Policy , Health Services Accessibility/organization & administration , Patents as Topic , Virus Diseases/drug therapy , Antiviral Agents/economics , Antiviral Agents/therapeutic use , Drugs, Generic , Global Health , Humans , Pandemics , Program Evaluation , Virus Diseases/economics , Virus Diseases/epidemiology , Virus Diseases/prevention & control
10.
Biotechnol Prog ; 38(1): e3207, 2022 01.
Article in English | MEDLINE | ID: covidwho-1378923

ABSTRACT

The year 2020 brought the onslaught of a global crisis in the form of the COVID-19 pandemic. While nearly every facet of everyday life and work was impacted by the pandemic, the biopharmaceutical industry found silver linings in innovation, partnership, and resiliency, all of which contributed to unprecedented speed in developing and delivering vaccines and therapies. The 7th International Conference on Accelerating Biopharmaceutical Development (AccBio 2021) brought together industry leaders to share experiences from the past year and discuss how lessons learned from the pandemic can be carried forward into the future of biopharmaceutical development. Presenters highlighted examples such as introducing biotherapeutics derived from non-clonal cell pools into the clinic, developing modular or platform technologies, and taking novel risks, among others. These strategies for enabling speed to clinic and launch, as well as for sustaining a robust supply chain, are likely to be integrated into future programs to ensure biomanufacturing resiliency and get medicines to patients faster than pre-pandemic times.


Subject(s)
COVID-19/epidemiology , Pandemics , Antiviral Agents/therapeutic use , COVID-19/virology , Delivery of Health Care/organization & administration , Drug Industry/organization & administration , Humans , SARS-CoV-2/isolation & purification , COVID-19 Drug Treatment
11.
Br J Hosp Med (Lond) ; 82(7): 1-4, 2021 Jul 02.
Article in English | MEDLINE | ID: covidwho-1337826

ABSTRACT

The NHS has always struggled to effectively adopt innovative medical technologies. A report by The Medical Technology Group argues that a new system for the widespread adoption of technology is needed. The report argues that, considering the growing backlog of procedures caused by the COVID-19 pandemic, medical technology can increase efficiency and deliver better outcomes for patients, while helping the NHS to recover.


Subject(s)
Biomedical Technology/organization & administration , COVID-19/epidemiology , Drug Industry/organization & administration , Efficiency, Organizational , Humans , Pandemics , Quality of Health Care , Quality of Life , SARS-CoV-2 , Systems Integration
13.
Pharmaceut Med ; 35(4): 197-202, 2021 07.
Article in English | MEDLINE | ID: covidwho-1293483

ABSTRACT

The medical affairs function represents one of the scientific interfaces in a pharmaceutical organization. Over the last two decades, medical affairs has evolved from being a support function to a strategic pillar within organizational business units. The COVID-19 pandemic has given rise to unforeseen circumstances resulting in a dramatic change in external stakeholder engagements, catapulting the medical affairs function into leading the way on scientific engagements and patient-centric endeavors. The changes in stakeholder interactions and behavior as a result of the pandemic last year are likely to persist in the foreseeable future for which medical affairs professionals need to enhance existing skill sets and acquire expertise in newer domains. In this paper, the transformation of the medical affairs team to a key strategic partner and the skills required to strengthen this transition, in the next normal of a post-COVID world, is explored.


Subject(s)
COVID-19/prevention & control , Drug Development/trends , Drug Industry/trends , Stakeholder Participation , COVID-19/epidemiology , Communicable Disease Control/standards , Drug Development/organization & administration , Drug Development/standards , Drug Industry/organization & administration , Drug Industry/standards , Health Services Accessibility/standards , Humans , India , Pandemics/prevention & control
16.
Curr Med Res Opin ; 37(6): 939-947, 2021 06.
Article in English | MEDLINE | ID: covidwho-1174783

ABSTRACT

OBJECTIVE: To safeguard key workers involved in development and production of medicines and ensure business continuity, we developed an occupational healthcare program, performed by our company's occupational healthcare services, to assess the infection and immune status for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pilot program, conducted at our company facilities, evaluated the suitability of diagnostic tools in our setting for program upscaling. METHODS: We used different marketed in vitro diagnostics (including tests for antibodies against spike protein subunits S1 and S2 and nucleocapsid [N] protein) combined with medical history, symptoms and likelihood of infection. We evaluated the testing strategy over four visits in 141 employees (known positive COVID-19 history, n = 20; unknown status, n = 121) between April and June 2020 at four company locations in Germany. Digital self-monitoring over the pilot program duration was also included. RESULTS: No incident infections were detected. Based on immune status, medical history and likelihood of infection, 10 participants (8.3%) with previously unknown history of COVID-19 were identified to have been infected before entering the program. These participants, who recalled no or mild symptoms in the preceding months, were primarily identified using an assay that detected both S1 and S2 immunoglobulin (Ig) G. The frequency of positive lateral flow assay (LFA) results (IgM or IgG directed against the N-protein) in this cohort was lower compared with participants with a known history of COVID-19 (0‒10.8% vs. 33.8‒75.7%, respectively). CONCLUSIONS: Data from this pilot program suggest that LFA for antibodies may not always reliably detect current, recent or past infections; consequently, these have not been included in our upscaled occupational healthcare program. Regular testing strategies for viral RNA and antibodies directed against different SARS-CoV-2 proteins, combined with hygiene rules and a comprehensive baseline assessment, are recommended to ensure avoidance of infections at workplace as reliably as possible.


Subject(s)
COVID-19/diagnosis , Drug Industry/organization & administration , Health Personnel/statistics & numerical data , Health Status , Occupational Health , Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Serological Testing , Humans , Pilot Projects , SARS-CoV-2/immunology
17.
Vaccine ; 38(34): 5418-5423, 2020 07 22.
Article in English | MEDLINE | ID: covidwho-1135582

ABSTRACT

The World Health Organization declared the COVID-19 disease as a pandemic requiring a rapid response. Through online search, direct communication with network members and an internal survey, engagements of developing countries' vaccine manufacturers' network members in the research and development of COVID-19 vaccines and their capacities in the manufacturing, fill-finish and distribution of vaccines were assessed. Currently, 19 network members engaged in research and development of COVID-19 vaccines, using six principal technology platforms. In addition, an internal survey showed that the number of vaccines supplied collectively by 37 members, in 2018-19, was about 3.5 billion doses annually. Almost a third of network members having vaccines prequalified by the World Health Organization comply with international regulations and mechanisms to distribute vaccines across borders. The use of existing manufacturing, fill-finish and distribution capabilities can support an efficient roll-out of vaccines against COVID-19, while maintaining supply security of existing vaccines for on-going immunization programmes.


Subject(s)
Biomedical Research/organization & administration , Coronavirus Infections , Drug Industry/organization & administration , International Cooperation , Pandemics , Pneumonia, Viral , Viral Vaccines/supply & distribution , COVID-19 , COVID-19 Vaccines , Clinical Trials as Topic , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Humans , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , World Health Organization
18.
Global Health ; 17(1): 24, 2021 03 03.
Article in English | MEDLINE | ID: covidwho-1115231

ABSTRACT

OBJECTIVE: The COVID-19 pandemic is a biosecurity threat, and many resource-rich countries are stockpiling and/or making plans to secure supplies of vaccine, therapeutics, and diagnostics for their citizens. We review the products that are being investigated for the prevention, diagnosis, and treatment of COVID-19; discuss the challenges that countries in sub-Saharan Africa may face with access to COVID-19 vaccine, therapeutics, and diagnostics due to the limited capacity to manufacture them in Africa; and make recommendations on actions to mitigate these challenges and ensure health security in sub-Saharan Africa during this unprecedented pandemic and future public-health crises. MAIN BODY: Sub-Saharan Africa will not be self-reliant for COVID-19 vaccines when they are developed. It can, however, take advantage of existing initiatives aimed at supporting COVID-19 vaccine access to resource-limited settings such as partnership with AstraZeneca, the Coalition for Epidemic Preparedness and Innovation, the Global Alliance for Vaccine and Immunisation, the Serum Institute of India, and the World Health Organization's COVID-19 Technology Access Pool. Accessing effective COVID-19 therapeutics will also be a major challenge for countries in sub-Saharan Africa, as production of therapeutics is frequently geared towards profitable Western markets and is ill-adapted to sub-Saharan Africa realities. The region can benefit from pooled procurement of COVID-19 therapy by the Africa Centres for Disease Control and Prevention in partnership with the African Union. If the use of convalescent plasma for the treatment of patients who are severely ill is found to be effective, access to the product will be minimally challenging since the region has a pool of recovered patients and human resources that can man supportive laboratories. The region also needs to drive the local development of rapid-test kits and other diagnostics for COVID-19. CONCLUSION: Access to vaccines, therapeutics, and diagnostics for COVID-19 will be a challenge for sub-Saharan Africans. This challenge should be confronted by collaborating with vaccine developers; pooled procurement of COVID-19 therapeutics; and local development of testing and diagnostic materials. The COVID-19 pandemic should be a wake-up call for sub-Saharan Africa to build vaccines, therapeutics, and diagnostics manufacturing capacity as one of the resources needed to address public-health crises.


Subject(s)
COVID-19 Testing , COVID-19 Vaccines/supply & distribution , COVID-19/prevention & control , Drug Industry/organization & administration , Africa South of the Sahara/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Humans , COVID-19 Drug Treatment
19.
J Nepal Health Res Counc ; 18(4): 807-809, 2021 Jan 22.
Article in English | MEDLINE | ID: covidwho-1055439

ABSTRACT

In the race for a safe and effective vaccine against Coronavirus disease-19 manufacturer plays a critical role throughout the development, clinical trial, manufacturing, supply, and vaccination phases. For the efficacy of Coronavirus disease-19 vaccine, proper transport, storage, vaccine carrier, adjuvant, dosage form and route of vaccine administration plays a crucial role for immune response. In the context of no more people were willing to pay for a Coronavirus disease-19 vaccine the logistics of manufacturing, storing and distributing the vaccine, and mass vaccination are essential. It is urgent to improve health promotion and reduce the barriers to Coronavirus disease-19 vaccination. Keywords: COVID-19; vaccine development; vaccination.


Subject(s)
COVID-19 Vaccines/supply & distribution , COVID-19/epidemiology , COVID-19/prevention & control , Drug Industry/organization & administration , Clinical Trials as Topic/organization & administration , Drug Development/organization & administration , Humans , Mass Vaccination/organization & administration , Nepal/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL